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Abstract

We present an overview of the Java PathExplorer runtime verification tool, in short referred
to as JPAX. JPAX can monitor the execution of a Java program and check that it conforms _dth

a set of user provided properties formulated La temporal logic. JPAX can in addition analyze

the program for concurrency errors such as deadlocks and data races. The concurrency analysis

requires no user provided specification. The tool facilitates automated instrumentation of a

program's bytecode, which when executed will emit an event stream, the execution trace, to an
observer. The observer dispatches the incoming event stream to a set of observer processes, each

performing a specialized analysis, such as the temporal logic verification, the deadlock analysis
and the data race analysis. Temporal logic specifications can be formulated by the user in the

Maude rewriting logic, where Maude is a high-speed rewriting system for equational logic, but

here extended with executable temporal logic. The Maude rewriting engine is then activated as

an event driven monitoring process. Alt_ernatively, temporal specifications can be translated into

efficient automata, which check the event stream. JPAX can be used during program testing

to gain increased information about program executions, and can potentially furthermore be

applied during operation to survey safety critical systems.

1 Introduction

Correctness of software is becoming an increasingly important issue in many branches of our society.

This is not the least true for NASA's space agencies, where space craft, rover and avionics technology

must satisfy very high safety standards. Recent space mission failures have even further emphasized

this. Traditional ad-hoc testing of software systems still seems to be the main approach to achieve

higher confidence in software. By traditional testing we mean some manual, and at best systematic,

way of generating test cases and some manual, ad-hoc way of evaluating the results of running the

test cases. Since evaluating test case executions manually is time consuming, it becomes hard to

run large collections of test cases in an automated fashion, for example overnight. Hence, there

is a need for generating test oracles in an easy and automated manner, preferably from high level

specifications. Furthermore, it is naive to believe that all errors in a software system can be

detected before deployment. Hence, one can argue for an additional need to use the test oracles for

monitoring the program during execution. This paper presents a system, called Java Path_Explorer,

or JPAX for short, that can monitor the execution of Java programs, and check that they conform

_dth user pro_dded bJgh level temporal logic specifications. In addition, JPAX analyzes programs for



concurrencyerrors,suchasdeadlocksanddataraces,alsoby analyzingsingleprogramexecutions.
Thealgorithmspresentedall takeasinput anexecutiontrace,beingasequenceof eventsrelevant
for the analysis.An executiontraceisobtainedbyrunninganinstrumentedversionof theprogram.
Only the instrumentationneedsto bemodifiedin caseprogramsin otherlanguagesthanJavaneed
to be monitored. The analysisalgorithmscanbe re-used.A casestudyof 35,000linesof C++
codefor a rovercontrollerhasfor examplebeencarriedout, leadingto thedetectionof a deadlock
with a minimal amountof effort.

Concerningthe first formof analysis,temporal logic verification, we consider two forms of logic:

future time logic and past time logic. We first show how these can be implemented in Maude [6,

7, 8], a high-performance system supporting both rewriting logic and membership equational logic.

The logics are implemented by providing their syntax in Maude's very convenient mL, cfix operator

notation, and by giving an operational semantics of the temporal operators. The implementation

is extremely efficient. The current version of Maude can do up to 3 million rewritings per second

on 800Mhz processors, and its compiled version is intended to support 15 million rewritings per

second. The Maude rewriting engine is used as an event driven monitoring process, performing the

event analysis. The implementation of both these logics in Maude together with a module that

handles propositional logic covers less than 130 lines. Therefore, defining new logics should be very

feasible for advanced users. Second, we show how one from a specification written in temporal

logic (be it future time or past time) can generate an observer automaton that checks the validity

of the specification on an execution trace. Such observer automata can be more efficient than

the rewriting-based implementations mentioned above. It especially removes the need for running

Maude as part of the monitoring environment.

Concerning the second form of analysis, concurrency analysis, multi-threaded software is the

source of a particular class of transient errors, namely deadlocks and data races. These errors

can be very hard to find using standard testing techniques since multi-threaded programs are

typically non-deterministic, and the deadlocks and data races are therefore only exposed in certain

"unlucky" executions. Model checking Can be used to detect such problems, and basically works

by trying all possible executions of the program. Several systems have been developed recently,

that can model check software, for example the Java PathFinder system (JPF) developed at NASA

AmesResearch Center [18, 35], and similar systems [14, 25, 34, i0, 3]. This can, however, be

very time and memory consuming (often program states are stored during execution and used to

determine whether a state has been already examined before). JPAX contains specialized trace

analysis algorithms for deadlock and data race analysis, that. from a single random execution trace

try to conclude the presence or the absence of deadlocks and data races in other traces of the

program. These algorithms, including the Eraser algorithm [33], are based on the derivation of

testable properties that are stronger than the original properties of deadlock freedom and data race

freedom, but therefore also easier to test. That is, if the program contains a deadlock or a data

race then the likelihood of these algorithms to find the problem is much higher than the likelihood

of actually meeting the deadlock or data race during execution.
The idea of detailed trace analysis is not new. Beyond being the foundation of traditional

testing, also more sophisticated trace analysis systems exist. Temporal logic has for example been

pursued in the commercial Temporal Rover tool (TR) [II], and in the MaC tool [27]. TR allows

the user to specify future time and past time temporal formulae, but requires the user to manually

instrument the code. The MaC tool is closer in spirit to what we describe in this paper, except

that i_--s_cifieati_n language is fixed. Neither of these tools provides support for concurrency
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analysis. A tool like Visual Threads [15, 33] contains hardwired deadlock and data race analysis

algorithms, but only works on Compaq platforms and only on C and C++. Furthermore, Visual

Threads cannot be easily extended by a user, while JFAX can. W'e furthermore have improved the

deadlock analysis algorithm to yield fewer false positives, an important objective if one wants such

a tool to be adopted by programmers. For an overview of recent work in runtime verification we

refer the reader to the proceedings of RV'01 and RV'02, the ist and 2nd workshops on runtime

verification [I, 2].
This paper is a summary of several papers written on Java PathExplorer [22, 21, 20, 17, 24,

23, 4, 16, 32, 19]. A rewriting implementation for future time LTL is presented in [22] and [23]. A

rewriting implementation of past time LTL is presented in [21]. Generation of observer automata

for future time LTL is described in [23]. Generation of observer dynamic programming algorithms

for past time LTL is presented in [24]. Concurrency analysis is studied in [4] and [16]. In [13] a

framework is described for translating future time LTL to Buchi-like automata.

The paper is organized as follows. Section 2 gives an overview of the JPAX system architecture.

Section 3 introduces the temporal logics that have been implemented in JPAX, namely future time

and past time temporal logic. Each logic is defined by its syntax and its semantics. Section 4

presents the various algorithms for monitoring the logics. First (Subsection 4. I) the rewriting based

approach is presented, showing how future time and past time ]ogi c can be encoded in the Maude

rewriting system, and how Maude is then used as the monitoring engine. Second (Subsection 4.2)

the observer automata/algorithm approach is presented, showing how e_cient observer automata

and algorithms can be generated from future time respectively past time temporal logic. Section 5

presents the concurrency analysis algorithms for detecting respectively data races and deadlocks.

Finally, Section 6 concludes the paper.

2 Architecture of JPAX

Java PathExplorer (JPAX) is a system for monitoring the execution of Java programs. The

system extracts an execution trace from a running program and verifies that the trace satisfies

certain properties. An execution trace is a sequence of events, of which there axe several kinds

as we shall discuss below. Two forms of monitoring are supported: temporal verification and

concurrency analysis. In temporal verification the user provides a specification in temporal logic

of how the observed system is expected to behave. The models of this specification are all the

execution traces that satisfy it. Finite execution traces generated by running the program are

checked against the specification for model conformance, and error messages are issued in case of

failure. In concurrency analysis, we are analyzing the trace for symptoms of concurrency problems,

such as deadlocks and data races.

JPAX itsekf is written in Java and consists of an instmtmentation module and an observer

module, see Figure 1. The instrumentation module automatically instruments the byiecode class

files of a compiled program by adding new instructions that when executed generate the execution

trace. The Java bytecode instrumentation is performed using the Jtrek Java bytecode engineering

tool [9]. Jtrek makes it possible to easily read Java class files (bytecode files), and traverse them as

abstract syntax trees while examining their contents, and insert new code. The inserted code can

access the contents of various runtime data structures, such as for example the call-time stack, and

will, when eventually executedl emit events carrying this extracted information to the observer. Six

kinds of events are generated: write(t, z) (thread _ writes-to var_ab_6 x), read(t, x) (thread t reads
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Figure 1: Overview of JPAX

variable x), lock(t, o) (thread t locks object o), zmZock(t, o) (thread t unlocks object o), start(tz, t2)

(thread tl starts thread t2), joir_(tl, t2) (thread h joins thread 42). The events (trace) are either
written to a file or to a socket, in both cases in plain text format. The observer will read the

events correspondingly. In case sockets are used, the observer can run in parallel with the observed

program, even on a different computer, and perform the analysis in real time.
An instrumentation script guides the instrumentation by stating which events should be re-

ported in the execution traces. For concurrency analysis this simply amounts to identifying whether

deadlock analysis or data race analysis is desired. Data race analysis is the most comprehensive

instrumentation and requires all above events to be generated, while deadlock analysis requires all

except write and read events. Temporal verification only requires the generation of write events for
those variables that influence the evaluation of the user provided temporal formulae. In this case

the script identifies explicitly these variables, together with a set of observable named predicates
over these variables. Only the observable predicates can be referred to (by name) in the temporal

_roperties. The advantage of this layered approach, as also stated in [27], is that the requirement

specification can be created without considering low level issues (such as what variables exist in the

program), and can even be created before the construction of the program as part of the systems

requirements.
The observer module is responsible for performing the trace analysis. It receives the events and

dispatches these to a set of observer rules, each rule performing a particular analysis that has been

requested. Generally, this modular rule based design allows a user to easily define new runtime

verification procedures without interfering with legacy code. Observer rules are written in Java, but

can call programs written in other languages, such as for example Maude. Maude plays a special role

in that high level requirement specifications can be written using equational logic, and the Maude

rewriting engine is then used as a monitoring engine during program execution. More specifically,

we implement various temporal logics in Maude, for example Linear Temporal Logic (LTL), by

writing an operational semantics for each logic, as will be explained in the remainder of the paper.
Maud¢_can then be run in what is called loop_ m_o_dewhi_ch turns Maude into an interactive _system

that can receive events, one by one, perform rewriting according to the operational semantics of the

Jl

iil

I i

4



logic,andthenwait for thenextevent.Aswill beexplainedin thepaper,wehavealsoimplemented
a monitor rule synthesis capability, that translates a collection of future and past time temporal

formulae into a Java program, that monitors conformance of the trace with the formulae. Maude

can here be used as a translator that generates the observer programs.

3 Temporal Logic as a Monitoring Requirements Language

Temporal logics are routinely used to express requirements to be proved or model checked on
software or hardware concurrent systems. We also find them a good candidate for a monitoring

requirements language. In this section we discuss future and past time temporal logic variants
whose models are finite execution traces, as needed in monitoring, rather than infinite ones. Since

a major factor in the design of JPAX and its afferent theory was efficiency, and since we were able
to device efficient algorithms for future and past time temporal logics regarded separately, in the

rest of the paper we investigate them as two distinct logics.
Both future time and past time temporal logics extend propositional calculus, which consists of

the following syntax:

F ::-- tmeFfaJse[A]-_FrFVF]FAFIF_F[F-+FIF+-+F"

A is a set of atomic predicates and G represents exclusive or (xor).

Our explicit goal is to develop a testing framework using temporal logics. Since testing sessions

are sooner or later stopped and a result of the analysis is expected, our execution traces will be

finite. More precisely, we regard a trace as a finite sequence of abstract states. In practice, these

states are generated by events emitted by the program that we want to observe. Such events could
indicate when variables are updated. If s is a state and a is an atomic proposition then a(s) is

true if and only if a holds in the state s; what it means for a proposition to "hold" in a state is

intentionally left undefined, but it can essentially mean anything: a variable is larger than another,

a lock is acquired, an array is sorted, etc. Finite traces wiI1 be the models of the two temporal

logics defined below, but it is worth mentioning that they are regarded differently within the two

logics: in future time LTL a finite trace is a sequence of future events, while in past time LTL it is

a sequence of past events. For that reason, each of these logics interpret satisfaction of an atomic

proposition differently. However, they both interpret the other propositional operators as expected,

that is

t _ true

t _ false

t
t k F1 op F2 iff

is always true,

is always fMse,

it is not the case that t _ F,

t _ F1 or/and/xor/implies/iff t _/:2, when op isV/A/e,-+/+-+.

3.1 Future Time Linear Temporal Logic

Formulae in classical Linear Temporal Logic (LTL) can be built using the following operators:

F ::= true [ fatse I A I -_F [ F op F Propositional operators
oF I oF [ Z_F I F Lts F ] F Uw F Fhture time operators

The propositional binary operators, op, are the ones above, and oF should be read "next F", oF
F " and F1 LTw F2 "El wegk urit-il- F TM

"eventually F", [LF aaiways F*, F{ _s F2 "Fl stro}ig until 2 , 2 -



An LTL standard model isa function t :A[+ --+2_ for some set of atomic propositions 7',i.e.,

an infinite trace over the alphabet 2 ;_, which maps each time point (a natural number) into the set

of propositions that hold at that point. The propositional operators have their obvious meaning.

oF holds for a trace {f F holds in the suffix trace starting in the next (the second) time point.

The formula _ holds if F holds in all time points, while oF holds if F holds in some future time

point. The formula Fi Us F2 holds if F2 holds in some future time point, and until then Fi holds.

The formula Fi/Tw/72 holds ifeither Fi holds in all time points, or otherwise, if F2 holds in some

future time point and until then FI holds. As an example illustrating the semantics, the formula

El(F1 -_ oF2) is true if for any time point it holds that if FI is true then eventually 7r2 is true.

Another property is [](X --+ o(Y/Ts Z)), which states that whenever X holds then from the next

state Y holds until strong eventually Z holds. It is standard to define a core LTL using only atomic

propositions, the propositional operators -_ (not) and A (and), and the temporal operators o_ and

-/_s -, and then define all other propositional and temporal operators as derived constructs, such

as oF := true gfsF and ELF := -,o-,F.

Since we want to use future time LTL in a runtime monitoring setting, we need to formalize

what it means for a finite trace to satis_ an LTL formula. The debatable issue is, of co_se, what

happens at the end of the trace. One possibility is to consider that all the atomic propositions fail

or succeed; however, this does not seem to be a good assumption because it may be the case that a

proposition held all the trace while a violation will be reported at the end of monitoring. Driven by

experiments, we found that a more reasonable assumption is to regard a finite trace as an infinite

stationary trace in which the last event is repeated infinite])< If t = sis2.., sn is a finite trace then

we let t (i) denote the trace sisi+l.., sn for each 1 < i < n. With the intuitions above we can now

define the semantics of finite trace future time LTL as follows:

t _ a iff a(si)holds,

t >oF if[ t'_F, wheret':t (2) if n> 1 andt'=tifn=l,

t,_oF iff t (0 _Fforsomel <i<n,

t _,_F iff t (_) _Fforalll<i<n,

t_FiLi_F2 iff t (j) _F2 for somel<j<nandt ({) _Fi for alll<i<j,

t _ Fi lA_ Y2 iff t _ _Fi or t '.----Fi bt, F2.

It is easy to see that if t is a trace of size 1 then t _ oF or t _ oF or t _ _ if and only if

t _ F, and that t _ F1 b/_ F2 if and only if t _ F2, and also that t _ Fi blw F2 if and on_ly if t _ F1

or t _ F2. Ig is worth noticing that finite trace LTL can behave quite differently from standard,

infinite trace LTL. For example, _here are formulae which are not valid in infinite trace LTL but

are valid in finite trace LTL, such as o(_a V _-,a), and there are formulae which are satisfiable in

infinite trace LTL but not in finite trace LTL, such as the negation of the above. The formula

above is satisfied by any finite trace because the last even;/state in the trace either satisfies a or it

doesn't.

3.2 Past Time Linear Temporal Logic

We next introduce basic past time LTL operators together with some new operators that we found

particularly useful for runtime monitoring, as well as their finite trace semantics. Syntactically, we

allow the following formulae:

J i
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F ::= true [ false [ A [ _F] Fop F Propositional operators

eF [ eF [ ElF i F Ss F I F Sw F Standard past time operators

t F 1_ Y ] IF, F)s ] IF, F)w Monitoring operators

The propositional binary operators, op, are like before, and o Y should be read "previously F", _F

"eventually in the past F", ElF "always in the past F", Fz Ss F2 "F1 strong since F2", F1 Sw F2

F " F", F", IF1, F2) "interval F F, " with a strong and"FI weak since 2 , T F "start _ F "end and i, 2

a weak version.

If t = sis2... Sn is a trace then we let t(i ) denote the trace sls2.., si for each 1 < i < zz. Then

the semantics of these operators can be given as follows:

t_F

t _aY

t _ Fz ,-qs F2

t F2
t_TF

tbtF

iff a(s_) holds,
iff t1_F, wheret _=t(_-z) ifn>landg=tifn=l,

iff t(i) _ F for some l < i < n,

Lff t(i) _Fforalll<i<n,

iff t(j) _F2 for somel_<j_<nandt(i) _F1 for allj<i<n,

iff t _ F18_ F2 or t _ l:_F1,
iff t _ F and it is not the ease that t _ ®F,

iff t _ ®F and it is not the case that t _ F,

iff t(j) _ F1 for some 1 _<j < n and t(i ) _ F2 for all j < i < n,

iff t _ IF1, F2)s or t _ [Z'-,F2.

Notice the special semantics of the operator "previously" on a trace of one state: s _ o _F iff

s _ fi'. This is consistent with the view that a trace consisting of exactly one state s is considered

like a statiormw infinite trace containing only the state s. We adopted this view because of intuitions

related to monitoring. One can start monitoring a process potentially at any moment, so the first

state in the trace might be different from the initial state of the monitored process. We think that

the "best guess" one can have w.r.t, the past of the monitored program is that it was stationary, in

a perfectly dual manner to future time finite trace LTL. Alternatively, one could consider that ®F

is false on a trace of one state for any atomic proposition F, but we find this semantics inconvenient

because some atomic propositions may be related, such as, for example, a proposition "gate-up"

and a proposition "gate-down".
The non-standard operators T, _, [-, -)s, and [_, -)w were inspired by work in runtkme verification

in [27"]. We found them o_en more intuitive and compact than the usual past time operators in

specifying runtime requirements. T F is true if and only if _F starts to be true in the current state,

F is true if and only if F ends to be true in the current state, and [FI, F2)s is true if and only if

F2 was never true since the last time FI was observed to be true, including the state when FI was

true; the interval operator, like the "since" operator, has both a strong and a weak version. For

example, if START and DOWN are predicates on the state of a web server to be monitored, say for

the last 24 hours, then [START, DOWN)s is a property stating that the server was rebooted recently

and since then it was not down, while [START, DOWN)w says that the server was not unexpectedly

down recently, meaning that it was either not down at all recently or it was rebooted and since

then it was not down.

As shown later in the paper, one can generate very efficient monitors from past time LTL

formulae, based on dynamic programming. What makes it so suitable for dynamic programming

is_ts recursi-ve nature:_ the satisfaction relation for a formula can be calculated along the execution

trace looking only one step backwards:

7



t_F

t _ F1Ss F:

t _ [&,F_)_
t > [&, F_)_,

iff t _ F or (n > 1 and t(,_-l) _ _F),

iff t _ F and (n > t implies t(n-1) '_ mE),

iff t _ F: or (n > l and t _ Fl and t(,_-l) _ Fl Ss F:),

iff t _ F2 or (t _ F1 and (n > 1 implies t(n-1) _ F1 8w F2)),

t V=s2 _nd (t > & or (_ > Z and t(__l) > [Sl, &)s)),
iff t _ F: and (t _ F1 or (n > 1 implies t(,_-l) _ [fl, F:)w)).

There is a tendency among logicians to minimize the number of operators in a given logic.

For example, it is known that two operators are sufficient in propositional calculus, and two more

("next" and "until") are needed for future time _emporal logics. There are also various ways to

minimize our past time logic defined above. More precisely, as claimed in [24], any combination

of one operator in the set {% T, _} and another in the set {Ss, Sw, Ds, [)w} suffices to define all the

other operators. Two of these 12 combinations are known in the literature. Unlike in theoretical

research, in practical monitoring of programs we want to have as many temporal operators as

possible available and not to automatically translate them into a reduced kernel set. The reason

is twofold. On the one hand, the more operators are available, the more succinct and natural the

task of writing requirement specifications. On the other hand, as s_n later in the paper, additional

memory is needed for each temporal operator, so we want to keep the formulae short.

4 Monitoring Requirements Expressed in Temporal Logics

Logic based monitoring consists of checking execution events against a user-provided requirement

specification written in some logic, typically an assertion logic with states as models, or a temporal

logic with traces as models. JPAX currently provides the two linear temporal logics discussed above

as built-in logics. Multiple logics can be used in parallel, so each property can be expressed in its

most suitable language. JPAX allows the user to define such new logics in a flexible manner, either

by using the Maude executable algebraic specification language or by implementing specialized

algorithms that synthesize efficient monitors from logical formulae.

4.1 Rewriting Based Monitoring

Maude [6, 7, 8] is a modularized membership equational [31] and rewriting logic [30] specification

and verification system whose operational engine is mainly based on a very efficient implementation

of rewriting. A Maude module consists of sort and operator declarations, as well as equations

relating terms over the operators and universally quaz_tified variables; modules can be composed.

It is often the case that equational and/or rewriting logics act like universal logics, in the sense

that other logics, or more precisely their syntax and operational semantics, can be expressed and

efficiently executed by rewriting, so we regard Maude as a good choice to develop and prototype

with various monitoring logics. The Maude implementations of the current temporal logics are

quite compact, so we include them below. They are based on a simple, general architecture to

define new logics which we only describe informally. Maude's notation will be introduced "on the

fly" as needed in examples.

4.1.1 Formulae and Data Structures

Vv:e have defined a generic module, called FORMULA, which defines the inlrastructure for all the user-

defined logics, its Maude code wi_. not be given due to space limitations, but the authors are happy

8



to pro_dde iton request. The module FORMULA includes some designated basic sorts,such as Formula

for syntactic formulae, FormulaDS for formula data structures needed when more information than

the formula itselfshould be stored for the next transition as in the case of past time LTL, Atom

for atomic propositions, or state variables,which in the state denote boolean values,AtomS=ate for

assignments of boolean values to atoms, and AtomState* for such assignments together with/i_al

assignments, i.e.,those that are followed by the end of a trace,often requiring a special evaluation

procedure as described in the subsections on future time and past time LTL. A state As is made

terminal by applying itthe unary operator _* : AtomState -> AtomState*. Formula isa subsort

of FormulaDS, because there are logicsin which no extra information but a modified formula needs

to be carried over for the next iteration (such as future time LTL). The propositions that hold in

a certain program state are generated from the executing instrumented program.

Perhaps the most important operator in FORMULA is_{_} : FormulaDS AtomState -> FormulaDS:

which updates the formula data structure when an (abstract) state change occurs during the ex-

ecution of the program. Notice the use of _iz-fiz notation for operator declaration, in which

underscores represent places of arguments, their order being the one in the arity of the operator.

On atomic propositions, say A, the module FOP.MULAdefinesthe "update" operator as follows:A(As*}

istrue or false,depending on whether As* assigns true or falseto the atom A,where As* isa terminal

or not atom state (i.e.,an assignment from atoms to boolean values). In the case of propositional

calculus, this update operation basically evaluates propositions in the new state. For other logics

itcan be more complicated, depending on the trace semantics of those particular logics.

4.1.2 Propositional Calculus

Propositional calculus should be included in any monitoring logic worth its salt. Therefore, we

begin with the following module which is heavily used in JPAX. It implements an e_cient rewriting

procedure due to Hsiang [26] to decide validity of propositions, reducing any boolean expression to

an exclusive disjunction (formally written _++_) of conjunctions (_/\_):

fmod PROP-CALC is ex FORMULA .

_.s Co21s_l-UCtOrs _**

op _/\_ : Formula Formula -> Formula [assoc comm] .

op _++_ : Formula Formula -> Formula [assoc comm] .

vats X Y Z : Formula . var As* : AtomState* .

eq true /\ X = X .

eq false /\ X - false .

eq false ++ X = X .

eq X ++ X " false .

eq X /\ X = X .

eq X /\ (Y++ Z) = (X /\ Y) ++ (X /\ Z) .

*-_ Derived operators ***

op _\/_ : Formula Formula -> Formula .

op _->_ : Formula Formula -> Formula .

op <-> : Formula Formula -> Formula .

op !_ : Formula -> Formula .

eq X \/ Y = (X /\ Y) ++ X ++ Y •

eq ! X = true ++ X .

eq X -> Y " true ++ X ++ (X /\ Y) •

eq X <-> Y - zrue ++ X ++ Y •

_,** Semantics

eq (X /\ Y){As*} = \{As=} /\ Y{As,} •

eq (X ++ Y){As*} = X{As=} ++ Y{As=}

endfm

In Maude, operators are introduced after the op and ops (when more than one operator is

introduced) symbols. Operators can be given attributes in square brackets, such as associativity

and commutativity. Universally quantified variables used in equations are introduced after the vat

and vats symbols. Finally, equations are introduced after the eq symbol. The specification shows

the flexible mix-fix notation of Maude, using underscores to stay for arguments, which allows us to

define the syntax of a logic in the most natural way.



4.1.3 Future Time Linear Temporal Logic

Our implementationof thefuturetime LTL presentedin Subsection3.1simplyconsistsof 8 equa-
tions, executedby Maudeasrewriteruleswhenevera newevent/stateis received.For simplicity
weonlypresentthe stronguntil operatorhere.Theweakuntil operator,whichoccursmorerarely
in monitoringrequirements,canbeobtainedby replacingthe righthand-sideof the last equation
by XfAs *} \/ YfAs *}:

fmod FT-LTL is ex PRSP-CALC .

*-* Syn=ax -**

op FJ_ : Formula-> Formula .

op <>_ : Formula -> Formula .

op o_ : Formula -> Formula .

op _U_ : Formula Formula -> Formula .

*** Semantics ***

vats X Y : Formula . var As : AtomState .

eq ([] X){As} = ([] X) /\ X{As} .

eq (<> X){As} _ (<> X) \/ XfAs} .

eq (o X)fAs} = X .

eq (X U Y)fAs} - Y(As} \/ (X_As} /\ (X U Y)) .

eq ([] X){As *} = X<As *} •

eq (<> X)TAs*) = XfAs *} .

eq (o X)_As *} = X{As *} •

eq (X U Y)_As -_ = Y(As *} .

endfm

The four LTL operators are added to those of the propositional calculus using the symbols: []_

(always), <>- (eventually), o_ (next), and _U_ (until). The operational semantics of these operators
is based on a formula transformation idea, in which monitoring requirements (formulae) are trans-

formed when a new event is received, hereby consuming the event. The 8 equations, divided in

two groups, refine the operator _{_} : FormulaDS AtonState -> FormulaDS provided by the mod-

ule FORMULA described in Subsubsection 4.1.1. Note that in the future time LTL case, the formulae

themselves are used as data structures, and that this is Permissible because Formula is a subsort

of FormulaDS. The operator _{_} tells how a formula is transformed by the occurrence of a state

change. The interested reader can consult [22] for a formal correctness proof and analysis of this

simple to implement rewriting algorithm. The underlying intuition can be elaborated as follows.

Assume a formula x that we want to monitor on an execution trace of which the first state is AS.

Then the equation X{As} = X', where X' is a formula resulting from applying the _{_} operator to

x and As, carries the following intuition: in order for x to hold on the rest of the trace, given that

the first state in the trace is As, then X' must hold on the trace following As. The first set of 4 rules

describes this semantics assuming that the state As is not the last state in the trace, while the last

four rules apply when As is the last in the trace. The term As * represents a state that is the last

in the trace, and reflects the l_efore mentioned intuition that a finite trace can be regarded as an

infiinite trace where the last state of the finite trace is repeated infinitely.

As an example; consider the formula [] (green -> (!red) U yellow) representing a monitoring

requirement of a traffic light controller, and a trace where the first state As makes the atomic

predicate green true and the others false. In this case, [] (green -> ( !red) U yellow) _:As} reduces

by rewriting to [] (green -> (!red) U yellow) /\ (!red) U yellow. This reflects the fact that after

the state change, (!red) U yellow now has to be true on the remaining trace, in addition to the

original always formula. A proof of correctness of this algorithm is given in [22], together with a very

simple improvement based on memoization, which can increase its efficiency in practice by more

than an order of magnitude. The effect of memoiza_ion (which essentially caches normal forms of

terms so they will never be reduced again) is that of building a monitoring automaton on the fly, as

the formulae (which become states in that automaton) are generated during the monitored execution

tracel Despite its overall exponential worst-case complexity, our rewriting based algorithm tends to

- be--quite acceptable in practical- situations= V_Zecouldn't notice any sig_Aficant difference-in-glob_

concrete experiments with JP.aX between thissimple 8 rule algorithm and an automata-based one
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in [13] that implements in 1,400 lines of Java code a Biichi automata inspired algorithm adapted

to finite trace LTL.

Such a finite trace semantics for LTL used for program monitoring has, however, some charac-

teristics that may seem unnatural. At the end of the execution trace, when the observed program

terminates, the observer needs to take a decision regarding the validity of the checked properties.

Let us consider now the formula [] (p -> <>q). If each p was followed by at least one q during the

monitored execution, then, at some extent one could say that the formula was satisfied; although

one should be aware that this is not a definite answer because the formula could have been very

well violated in the future if the program hadn't been stopped. If p was true and it was not followed

by a q, then one could say that the formula was violated, but it may have been very well satisfied if

the program had been left to continue its execution. Furthermore, every p could have been followed

by a q during the execution, only to be violated for the last p, in which case we would likely expect

the program to be correct if we terminated it by force. There are of course LTL properties that give

the user absolute confidence during the monitoring. For example, a violation of a safety property

reflects a clear misbehavior of the monitored program.

The lesson that we learned from experiments with LTL monitoring is twofold. First, we learned

that, unlike in model checking or theorem proving, LTL formulae and especially their violation or

satisfaction must be viewed with extra information, such as for example statistics of how well a

formula has "performed" along the execution trace, as first suggested in [21] and then done in [12].

Second, we developed a belief that LTL may not be the most appropriate formalism for logic based

monitoring; other more specific logics, such as real time LTL, interval logics, past time LTL, or

most likely undiscovered ones, could be of greater interest than pure LTL. We next describe an

implementation of past time LTL in Maude, a perhaps more natural logic for runtime monitoring.

4.1.4 Past Time Linear Temporal Logic

Safety requirements can usually be more easily expressed using past time LTL formulae than using

future time ones. More precisely, they can be represented as formulae [] F, where F is a past time

LTL formula [28, 29]. These properties are very suitable for logic based monitoring because they

only refer to the past, and hence their value is always either true or false in any state along the

trace, and never to-be-determined as in future time LTL. The implementation of past time LTL is,

however, surprisingly slightly more tedious than the above implementation of future time LTL. In

order to keep the specification short, we only include the standard past time operators "previous"

and "strong since" below, the others being either defined similarly or just rewritten in terms of the

standard operators. Our rewriting implementation appears similar in spirit to the one used in [27]

(according to a private communication), which also uses a version of past time logic.
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fmod PT-LTL is ex PROP-CALC .

*,- Syntax -**

op - : Formula -> Formula .

op _S_ Formula Formula -> Formula .

**. Semantic Data structure **_

op mkDS : Formula AtomState -> FormulaDS .

op atom : Atom Bool -> FormulaDS .

op prey : FormulaDS Bool -> FormulaDS .

op and : FormulaDS FormulaDS Bool -> FormulaDS .

op xor : FormulaDS Formu!aDS Bool -> FormulaDS .

op since : FormulaDS FormulaDS Bool -> FormulaDS .

vat A : Atom .

var As : AtomState .

vat B : Bool .

vats X Y : Formula .

vats D D' Dx Dx' Dy Dy' : FormulaDS .

eq [aZom(A,B)] - B .

eq [prev(D,B)] = B .

eq [since(Dx,Dy,B)] = B .

eq [and(Dx,Dy,B)] = B .

eq [xor(Dx,Dy,B)] = B .

eq mkDS(true, As) - true .

eq mkDS(false, As) - false .

eq mkDS(A, As) = atom(A, (A{As} H Zrue)) .

eq mkDS(" X, As) = mkDS(X, As) .

ceq mkDS(X S Y, As) = since(Dx, Dy, [Dy])

if Dx := mkDS(X, As) /\ Dy := mkDS(Y, As) .

ceq mkDS(X /\ Y, As) = and(Dx, Dy, [Dx] and [Dy])

if Dx := mkDS(X, As) /\ Dy :- mkDS(Y, As) .

ceqmkDS(X ++ Y, As) _ xor(Dx, Dy, [Dx] xor [Dy])

if Dx := mkDS(X, As) /\ Dy := mkDS(Y, As) •

• s* Semaz_ics _*.

eq atom(A,B){As} = atom(A, (A{As} "= true)) •

eq prev(D,B){As} = prev(D{As},[D]) •

ceq since(Dx,Dy,B){As} "

since(Dx',Dy',[Dy'] or B and [Dx'])

if Dx' := Dx{As} /\ Dy' := Dy{As} •

ceq and(Dx,Dy,B){As} =

and(Dx',Dy',[Dx'] and [Dy'])

if Dx' := Dx{As} /\ Dy' :- Dy{As} .

ceq xor(Dx,Dy,B){As} -

xor(Dx',Dy',[Dx'] xor [Dy'])

if Dx' := Dx{As} /\ Dy' := Dy{As} .

endfm

The module firstintroduces the syntax of the logic and then the formula data structure needed

for past time LTL and its semantics. The data structure consists of terms of sort FormulaDS and

is needed to represent a formula properly during monitoring. This is in contrast to future time

LTL, where a formula represented itself,and a transformation caused by a state transition was

performed by transforming the formula into a new formula that had to hold on the rest of the

trace. In past time LTL this technique does not apply. Instead, for each formula a specialtree-like

data structure is introduced, which keeps track of the boolean vadues of all subformulae of the

formula in the latest considered state. These values are used to correctly evaluate the value of

the entire formula when the next state is received. The operation mkDS creates the data structure

representing a formula. The constructors of type FormulaDS correspond to the differentkinds of past

time LTL operators: atom (foratomic propositions), and, xor, prey, and since. Hence, for example,

the formula - A (previously A) for some atomic proposition A isrepresented by prey(atom(A, true) ,

false) in case A is true in the current statebut was falsein the previous state. Hence the second

boolean argument represents the current value of the formula, and isreturned by the [_]operation.

The mkDS operation that creates the initialdata structures from formulae isdefined when the first,

or the initial,event�state is received.

Once the data structure is initialized,the operation mkDS is not used anymore. Instead, the

operation _{_} : FormulaDS AtomState -> FormulaDS isiterativelyused to modify the formula data

structure on each subsequent state. The equations for the three binary operators (since, and and

xor) are defined using conditional equations (ceq). Conditions are_provided afterthe if keyword.

They can introduce new variablesvia built-inmatching operators (_:=-).For example, ifa formula

data structure has the form since (Dx, Dy, B), where Dx and _Dy are other formula data structures

and B is the current boolean value of the associated "since" formula, then, when receiving a new

state As, we firstupdate the child data structures into Dx' and Dy', and then update the current

vMue of the formula as expected: it is true ifand only if the value associated with Dy' is true

(i.e.,ffitssecond argument holds now) or else both the value associated with Dx' is true (i.e.,its

first-argu_mentholds-now) and B is£rue (i.e.,_its_value at the previous step was true). The_binary

operator ==_ isalso built-inand takes two terms of any sort,reduces them to their normal forms,

J_
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and thenreturnstrue if they areequalandfalseotherwise.

4.2 Efficient Observer Generation

Even though the rewriting based monitoring algorithms presented in the previous subsection per-

form quite well in practice, there can be situations in which one wants to minimize the monitoring

overhead as much as possible. Additionally, despite their simplicity and elegance, the procedures

above require an efficient AC rewriting engine (for propositional calculus simplifications) which

may not be available or may not be desirable on some monitoring platforms, such as, for example,

within an embedded system. In this subsection we present two efficient monitoring algorithms, one

for future time and the other for past time LTL.

4.2.1 Future Time LTL

In this section we overview an algorithm built on the ideas in Subsection 4.1.3, taking as input an

LTL formula and generating a special finite state machine (FSlvi), called binary transition tree finite

state machine (BTT-FSM), that can then be used as an efficient monitor. We here only present

it at a high level and put emphasis on examples. A BTT, FSM for the traffic light control formula

[] (green :> !red U yellow) discussed in Subsection 4.1.3 can be seen in Figure 2 (Figure 3 shows

a more formal representation).

State

2

BTT for non-terminal events

o
false (_

false (_

BTT for terminal events

false true

true false

Figure 2: A BTT-FSM for the formula [](green -> !red U yellow)

One should think of transitions using BTTs as naturally as possible; for example, if the BTT-

FSM in Figure 2 is in state 1 and a non-terminal event is received, then: first evaluate the predicate

yel-!-ow; if true then stay in state 1 else evaluate green; if false then stay_in state 1 else evaluate

red i if true then report "formula violated" else move to state 2. _hen receiving a terminal event,
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dueto terminationof monitoring,ff the BTT-FSMis in state1 thenevaluateyellowand ff true
then return true elsetheoppositeresultofevaluatinggreen.Onlytrue/falsemessagesarereported
on terminalevents,sothe BTTs executedon terminaleventsarejust Binary DecisionDiagrams
(BDDs) [5J.

TheseFSMscanbeeitherstoredasdatastructuresorgeneratedassourcecode(casestatements)
whichcanfurther becompiledinto actualmonitors.OurFSMscanbeexponentialin the number
of states(asfunctionof the sizeof the initial LTL formula)but theyonly needto evaluateat most
all the atomicstatepredicatesin orderto proceedto the nextstatewhena neweventis received,
sothe runtimeoverheadis actuallylinearwith thenumberof distinct variablesat worst. Thesize
of ourFSMscanbecomea problemwhenstorageis ascarceresource,sowepayspecialattention
to generatingo?ti_al FSMs. Interestingly, the number of state predicates to be evaluated tends

to decrease with the number of states, so the overall monitoring overhead is also reduced. The

drawback of generating an optimal BTT-FSM statically, i.e., before monitoring, is the exponential

time/space required at startup (compilation). Therefore, we recommend this algorithm only in
situations where the LTL formulae to monitor are relatively small in size and the runtime overhead

is desired to be minimal.

Informally, our algorithm to generate minimal FSMs from LTL formulae uses the rewriting

based algorithm presented in the previous section statically on all possible events, until the set of

formulae to which the initial LTL formula can "evolve" stabilizes. More precisely, it builds a FSM

whose states are formulae and whose transitions are "events", which are regarded as propositions

on state boolean variables. Whenever a new potential state _, that is an LTL formula, is generated

via a new even% that is a proposition on state variables p, from an existing state _, _ is semantically

compared with all the previously generated states. If the 5' is not equivalent to any other existing

state then it is added as a new state in the FSM. If found semantically equivalent to an already

existing formula, say _, then it is not added to the state space, but the current transition from

_o to %5' is updated by taking its disjunction with p (if no transition from _ to _)' exists then a

transition p is added). The semantical comparison is done using a validity checker for finite trace

LTL that we have developed especially for this purpose. All these techniques are described and

analyzed in more detail in [23].
Once the steps above terminate, the formulae _, _, etc., encoding the states are not needed

anymore, so we replace them by unique labels in order to reduce the amount of storage needed to

encode the BTT-FSM. This algorithm can be relatively easily implemented in any programming

language. We have, however, found Maude again a very elegant system, implementing this whole

algorithm in about 200 lines of Maude code.

This BTT-FSM generation algorithm, despite its overall startup exponential time, can be very

useful when formulae are relatively short. For the traffic light controller requirement formula

discussed previously, [] (green -> (!red) U yellow), our algorithm generates in about 0.2 seconds the

optimal BTT-FSM in Figure 3 (also shown in Figure

State I Non-terminal event

I I yellow ? i : green .9 red .9 false: 2 : i2 yellow ? 1 : red ? false : 2

2 in flowchart notation). For simplicity, the

Terminal event I
yellow ? true : green ? false : true

yellow ? true : false

Fi_tt_ 3_ Aft optimal BTT-FSM for the formula [](green :> !red U yellow)

b

ili

bl
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states true and false do not appear in Figure 3. Notice that the atomic predicate red does not need

to be evaluated on terminal events and that wee= does not need to be evaluated in state 2. In

this example, the colors are not supposed to exclude each other, that is, the traffic controller can

potentially be both green and red.
The LTL formulae on which our algorithm has the worst performance are those containing many

nested temporal operators (which are not frequently used in specifications anyway, because of the

high risk of getting them wrong). For example, it takes our algorithm 1.3 seconds to generate the

minimal 3-state (true and false states axe not counted) BTT-FSM for the formula a u (b U (c U a))
and 13.2 seconds to generate the 7-state minimal BTT-FSM for the formula ((a u b) a c) u a. It

never took our current implementation more than a few seconds to generate the BTT-FSM of any

LTL of interest for our applications (i.e., non-artificial). Figure 4 shows the generated BTT-FSM

of some artificial LTL formulae, taking together less than 15 seconds to be generated.

Formula

Ooa

.(Oav O-_a)
O(a --*oh)

ag/ (b bf c)

au (bu (cUd))

((a/Ab) Uc) U d

next end

I 1 a:t:t

1 t

a? (b? 1:2):1 a? (b?t:f):t

b?1:2 b?t:f

c?t:(a?l:(b?2:f)) c?t:f
c?t:(b?2:f) c?t:f
d?t:a?l:b?2:c?3:f d?t:f

d?t:b?2:c?3:f d?t:f

d?t:c?3:f d?t:f

d?t:c?l:b?4:a?5:f d?t:f

b?c?t:7:a?c?6:2:f c

b?d?t:c?l:4:a?d?6:c?3:5:f d

c?d?t:l:b?d?7:4:a?d?2:5:f d

b?d?c?t:7:c?l:4:a?d?c?6:2:c?3:5:f

b?t:a?6:f

c?t:b?7:a?2:f

?b?t:f:f

?b?t:f:f

?c?t:f:f

d?c?b?t:f:f:f

b?t:f

c?t:f

Figure 4: Six BTT-FSMs generated in less than 15 seconds.

The generated BTT-FSMs are monitored most efficiently on RAM machines, due to the fact

that ease statements are usually implemented via jumps in memory. Monitoring BTT-FSMs using

rewriting does not seem appropriate because it would require linear time (as a function of the

number of states) to extract the BTT associated to a state in a BTT-FSM. However, we believe

that the algorithm presented in Subsection 4.1.3 is satisfactory in practice if one is willing to use a

rewriting engine for monitoring.

4.2.2 Past Time LTL

We next focus on generating efficient monitors from formulae in past time LTL. The generated

monitoring algorithm tests whether the formula is satisfied by a finite trace of events given as input
and runs in linear time and space at worst. We only show how the generated monitoring algorithm

looks for a concrete past time formula example, referring the interested reader to [24] for more

details.
..... We think that the next example is practically sufficient for the reader to for#see our general

algorithm presented in detail in [24]. Let T P -+ [q, $ (r V S))s be the past time LTL formula that
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we want to generate code for. The formula states: "whenever p becomes true, then q has been true

in the past, and since then we have not yet seen the end of r or s". The code translation depends

on an enumeration of the subformulae of the formula that satisfies the enumeration invariant:

any formula has an enumeration number smaller than the numbers of all its subformulae. Let

_0, _I, .-., _s be such an enumeration:

#o = lp [q,l (rvs)),,
#1 = 1"P,

cp2 = P,

_D3 = [q,J. (rVS))s,

_4 : q,

= +(rvs),
_6 = r V S,

_97 : r,

_8 = s.

Note that the formulae have here been enumerated in a post-order fashion. One could have chosen

a breadth-first order, or any other enumeration, as long as the enumeration invariant is true.

The input to the generated program will be a finite trace t = ele2...en of n events. The generated

program will maintain a state via a function update : State × Event --_ State, which updates the state

with agiven event. Our generated algorithms are dynamic programming algorithms speculating the

recursive nature of the semantics of past time LTL as sho_n in Subsection 3.2. In order to illustrate

the dynamic programming aspect of the solution, one can imagine recursively defining a matrix

s[l..n,0..8] of boolean values {0, i}, with the meaning that s[i,j] = 1 iff t(0 _ _j. This would be

the standard way of regarding the above satisfaction problem as a dynamic programming problem.

An important observation is, however, that, like in many other dynamic programming algorithms,

one doesn't have to store all the table s[l..n, 0..8], which would be quite large in practice; in this

case, one needs only s[i, 0..8] and s[i- 1, 0..8], which we'll write now[O..8] and pre[O..8] from now

on, respectively. It is now only a relatively simple exercise to write up the following algorithm for

checking the above formula on a finite trace:

State state *- {}; _-

bit pre[0..8]; bit now[O..8];

INPUT: trace t = ¢le2...¢n;

/* Initialization of state and pre */

state +-- update(state, el);

pre[8] +--s(state); pre[7] _ r(state); pre[6] _-- pre[7] or pre[8];

pre[5] _ false; pre[4] _ q(state); pre[3] +---pre[4] and not pre[5];

pre[2] _-- p(state); pre[1] _ false; pre[O] +- not pre[1] or pre[3];

/* Event interpretation loop */

fori-2tondo {

state.*-- update(state, ei);

now[8] _-- s(state); now[7] .-- r(state); now[6] _-- now[7] or now[8];

now[5] *--- not now[6] and pre[6]; now[4] _ q(state);

now[3] *-- (pre[3] or now[4]) and not now[Sl;

now[2] _-- p(-state); now[i]Zz- _w--_22]- and not _[2_. n_[O]%:- not nb_[_]--SY_b_[3]; -

........................
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};

if now[O] = 0 then output (" properzy violat ed'' );

pro +-- now;

In the following we explain the generated program.

Declarations Initially a state is declared. This will be updated as the input event list is processed.

Next, the two arrays pro mud now are declared. The pro array will contain values of all

subformuiae in the previous state, while now will contain the value of all subformulae in the

current state. The trace of events is then input. Such an event list can be read from a file

generated from a program execution, or alternatively the events can be input on-the-fly one

by one when generated, without storing them in a file first.

Initialization The initialization phase consists of initializing the state variable and the pro array.

The first event el of the event list is used to initialize the state variable. The pro array is

initialized by evaluating all subformulae bottom up, starting with highest formula numbers,

and assigning these values to the corresponding elements of the pTe array; hence, for any

i E {0... 8} pro[i] is assigned the initial value of formula %p_. The pro array is initialized

in such a way as to maintain the view that the initial state is supposed stationary before

monitoring is started. This in particular means that T p is false, as well as is _ (r v s), since

there is no change in state (indices 1 and 5). The interval operator has the obvious initial

interpretation: the first argument must be true and the second false for the formula to be

true (index 3). Propositions are true if they hold in the initial state (indices 2, 4, 7 and 8),

and boolean operators are interpreted the standard way (indices 0, 6).

Event Loop The main evaluation loop goes through the event trace, starting from the second

event. For each such event, the state is updated, followed by assignments to the now array

in a bottom-up fashion similar to the initialization of the pro array: the array elements are

assigned values from higher index values to lower index values, corresponding to the values of

the corresponding subformulae. Propositional boolean operators are interpreted the standard

way (indices 0 and 6). The formula T p is true if p is true now and not true in the previous

state (index i). Similarly with the formula _ (r V s) (index 5). The formula [q, _ (r V s))s

is true if either the formula was true in the previous state, or q is true in the current state,

and in addition _ (r V s) is not true in the current state (index 3). At the end of the loop

an error message is issued if now[O], the value of the whole formula, has the value 0 in the

current state. Finally, the entire now array is copied into pro.

Given a past time LTL formula, the analysis of this algorithm is straightforward. Its time complexity

is O(n) where n is the length of the input trace, the constant being given by the size of the formula.

The memory required is constant, since the length of the two arrays is the size of the formula.

However, if one also includes the size of the formula, say m, into the analysis; then the time

complexity is obviously G(n- m) while the memory required is 2 • (m + I) bits. It is hard to find

algorithms running faster than the above in practical situations, though some slight optimizations

can be imagined as shown below.
Even though a smart compiler can in principle generate good machine code from the code

........ above_-it-is still-worth-exploring-ways to synthesize directly- optimized code-especialLy--because-there

are some attributes that are specific to the run, line observer which a compiler cannot take into
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consideration. A first observation is that not all the bits in pre are needed, but only those which

are used at the next iteration, namely 2, 3, and 6. Therefore, only a bit per temporal operator

is needed, thereby reducing significantly the memory required by the generated algorithm. Then

the body of the generated "for" loop becomes after (blind) substitution (we don't consider the

initialization code here):

state +-- update(state, e_)

now[3] *---r( state) or s(state)

now!2] (p e[2] q(state)) ( ot now[3]andp e[3])
 ow[1] p(state)
if ((not (now[l] and not pre[1]) or now[2]) : O)

then output(' 'property violated' ');

which can be further optimized by boolean simplifications:

state _-- update(state, ei )

now[3] _-- r( state) or s(state)

now[2] +-- (pre[2] or q(state)) and (now[3] or not pre[3])

 ow[1] p(state)
if (now[l]and p e[1]and  ow[2])

then output(' 'property violated' ');

The most expensive part of the code above is clearly the function calls, namely p(state), q(state),

r(state), and s(state). Depending upon the runtime requirements, the execution time of these
functions may vary significantly. However, since one of the major concerns of monitoring is to affect

the normal execution of the monitored program as Little as possible, especially in online monitoring,

one would of course want to evaluate the atomic predicates on states only if really needed, or rather

to evaluate only those that, probabilistically, add a minimum cost. Since we don't want to count

on an optimizing compiler, we prefer to store the boolean formula as some kind of binary decision

diagram. We have implemented a procedure in Maude, on top of a propositional calculus module,

which generates all correct (_?_ : _)-expressions for {, admittedly a potentially exponential number
in the number of distinct atomic propositions in p, and then chooses the shortest in size. Applied

on the code above, it yields:

state _ update(state, ej)

now[3] _ r(state) ? 1 : s(state)

now[2] _-- pre[3] ? pre[2] ? now[3] : q(state) : pre[2] ? 1 : q(state)

now[l] _-- p( state)

if(pre[l] ? 0 : now[2]? 0 : now[l])

then output (''propert.yviolated' ');

We would liketo extend our procedureto taketheevaluationcostsofpredicatesintoconsideration.

These costscan eitherbe provided by the userofthe system or be calculatedautomaticallyby a

staticanalysisof predicates'code,or even be estimatedby executingthe predicateson a sample

of states.However, based on our examples so far,we conjecturethat,given a boolean formula

in which a/lthe atomic propositions-havethe same cost,the probabilisticallyruntime optima/

(3_ :_)-expressionimplementing _ isvzactlythe one which issmallestin size.

--A--f_arthemoptimizationwould be to generated_ectly_machine-codeinstead_of_usinga compiler..

Then the arraysof bitsnow and pre can be storedintwo registers,which would be allthe memory
..................................................
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needed. Since all the operations executed are bit operations, the generated code is expected to

be very fast. One could even imagine hardware implementations of past time monitors, using the

same ideas, in order to enforce safety requirements on physical devices.

5 Concurrency Analysis

Logic based analysis of execution traces as described in the previous section can reveal domain

specific high level errors, but it implies human intervention in designing the application require-

ments. However, many errors are lower level and are usually due to bad programming practice or

lack of attention, and fortunately, an interesting portion of them can be revealed automatically.

Even if some of these error patterns could be specified using adequate requirements formalisms and

then enforced using the same logic-based approach as above, we think that this procedure is too

heavy for this kind of errors, and that it is actually more appropriate to allow the users to attach

designated efficient algorithms to JPAX. W'e have implemented the algorithms described below in

both Niaude and Java, but the current JPAX uses the Java implementations.

Error pattern runtime analysis algorithms explore an execution trace and detect error potentials.

The important and appealing aspect of these algorithms is that they find error potentials even in

the case where errors do not explicitly occur in the examined execution trace. They are usually

fast and scalable, and often catch the problems they are designed to catch, that is, the randomness

in the choice of run does not seem to imply a similar randomness in the analysis results. The trade

off is that they have less coverage than heavyweight formal methods (which may result in false

negatives) and may suggest problems which, after a careful semantical analysis, turn out not to

be errors (false positives). Two examples of such algorithms focusing on concurrency errors have

been implemented in JPAX: a data race analysis algorithm and a deadlock analysis algorithm.

The data race algorithm is essentially the Eraser algorithm [33], previously implemented in the

Visual Threads tool [15] to work for C and C÷+ on Compaq hardware platforms, but in JPAX

implemented to work for Java in a platform independent manner. The deadlock algorithm is

an improvement of the deadlock algorithm presented in [15] that minimizes the number of false

positives. This algorithm is in full described in [4]. The rest of this section shortly describes the

data race and deadlock detection algorithms.

5.1 Data Race Analysis

We briefly describe here how data races can occur in concurrent Java programs, and how Eraser [33]

has been implemented in JPAX to detect such. A data race occurs when two or more concurrent

threads access a shared variable, at least one access is a write, and the threads use no explicit

mechanism to prevent the accesses from being simultaneous. The Eraser algorithm detects data

races by studying a single execution trace of the monitored program, trying to conclude whether

there exist other traces where data races are possible. We illustrate the data race analysis with the

Java program in Figure 5.

The class Value contains an integer variable x, a synchronized method add that updates x

by adding the content of another Value variable, and an unsynchronized method get that simply

returns the value of x. Task is a thread class: its instances are started with the method start

which executes the user defined method run. Two such tasks are started in Main, on two instances

of-the V_!ue class, vl and v2. When running JPAX with the Eraser option-switched on, a-data-
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I. class Value{

2.

3.

4.

5.

6.

7. )

8.

9.

10.

11.

12.

13.

14.

15.

16.

1T.

18.

19.

20.

21.

22.

23.

24.

private int x = !;

public synchronized void add(Value v){x = x + v.ge=();}

public int getO{re=urn x;}

class Task extends Thread{

Value vl; Value v2;

public Task(Value vl.Value v2){

this.v1 = vl; this.v2 = v2;

=his.star=();

}

public void run(){vl.add(v2);}

}

class Main{

public static void main(String[] args){

Value vl = new Value(); Value v2 = new Value();

new Task(vl,v2); new Task(v2,vl);

Figure 5: Example Program with data race

J

race potential is found, reporting that the variable x in class Value is accessed unprotected by

the two threads in lines 4 and 6, respectively. The generated warning message gives a scenario

under which a data race might appear, summarizing the following. One Task thread can call the

add method on the object vl with the parameter Value object v2, whose content is thus read via

the unsynchronized get method. The other thread can simultaneously do the same thing, i.e.,

call the add method on v2. Therefore, the content of v2 might be accessed simultaneously by the

two threads. Note that Java allows two threads to operate simultaneously on an object if at least

one of the threads does not synchronize on the object, which is the case here. Two data race

warnings are actually emitted, since the the other task can perform the same behavior with vl and

v2 interchanged.

Roughly, the algorithm is implemented in JPAX as follows. The instrumented byte code of the

monitored program emits to the observer appropriate events when variables are written to or read

from, and when locks are acquired or released as a result of entering/leaving Java's synchronized

statements or from calling/returning from synchronized methods. The observer maintains two

data structures: a thread map that keeps track of all the locks owned at any point in time by each

thread, and a variable map that associates with each (shared) variable the intersection of the set of

locks that has been commonly owned by all accessing threads in the past. If this set ever becomes

empty then a data race potential exists. More precisely, when a variable is accessed for the first

time, the locks owned by the accessing thread at that moment are stored in the variable's lock set.

Subsequent accesses by other threads cause the set to be refined to its intersection _dth the locks

owned by those threads. An extra state machine is also maintained for each variable to keep track

of how many threads have accessed the variable and how (read/write). This is used to reduce the

number of false positives, such as situations in which variables are initialized by a single thread

without locks (which is safe) or several threads only read a variable _Jter it has been initialized

tJ !
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(whichis also safe).

Deadlock Detection

JPAX can detect resource deadlocks, where a collection of threads access a collection of resources

in a cyclic manner. For example, a deadlock can occur if two threads T1 and T2 need to synchro-

nize on two objects A and B to do their respective task, but they synchronize on the objects in

different order: T1 first synchronizes on A and then (without releasing A first) on B, while T= first

synchronizes on B and then (without releasing B) on A. One can create such a situation in the

previous Java example if one wrongly tries to repair the data race by also defining the get method

in line 6 as synchronized:

6. public synchronized int getO{return x;}

It is clear now that the data race algorithm will indeed not return a warning anymore because the

variable x can no longer be accessed simultaneously from two threads. However, there is a deadlock

potential now and JPAX detects it. More precisely, when running JPAX on the modified program,

a warning message is issued summarizing the fact that two object instances of the Value class are

taken in a different order by the two Task threads. It also indicates the line numbers where the

threads may potentially deadlock: line 4 where the get method called from add may block the

second object. Note that any execution of the modified program will cause the deadlock warning

to be issued, hence there are guaranteed no false negatives for this example. This pleasing proper_y

can, however, not be expected for realistic programs. Conversely, deadlock potentials might be

reported in general even if those deadlocks will never appear in any execution of the program (false

positives). For this program, however, there are neither any false positives.

The runtime deadlock analysis algorithm needs only a subset of the events generated for the

data race algorithm, namely those related to lock acquisitions and releases that result from enter-

ing/leaving Java's synchronized statements or from calling/returning _om synchronized methods.

Start and join events are also needed and are used to reduce false positives. Two data structures

are maintained in the observer: as in the data race algorithm a thread map keeps track of the locks

owned by each thread, while a second data structure, a lock graph, updates a graph that accumu-

lates as nodes all the locks taken by any thread during an execution. An edge is introduced from a

lock LI to a lock L2 whenever a thread that already holds LI acquires L2. If during the execution of

the program this graph becomes cyclic, a deadlock potential is reported. This simple algorithm can

reveal complex deadlock potentials between any number of threads. The just presented algorithm

is the one also described in [15]. The algorithm in JPaX is, however, further augmented to yield less

false positives, as described in detail in [4]. Three categories of false positives are eliminated by the

extended algorithm. The first category, single threaded cycles, refers to cycles that are created by

one single thread. Guarded cycles refer to cycles that are guarded by a gate lock "taken higher up"

by M1 involved threads. Finally, thread segmented cycles refer to cycles between thread segments

that cannot possibly execute concurrently. To illustrate a guarded cycle consider the program in

Figure 5, and assume that line number 6 has been modified to include the synchronized keyword,

such that a deadlock situation is possible. If we now further modify the program as follows, by

adding a synchronization on a single gate lock before other locks are taken, then no deadlock can

occur:

class Task extends Thread{
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static Object gate = new Object();

public void run(){

synchro=ized(gate){

vl.add(v2);

}
}

6 Conclusions

We have presented work done in the context of the the JPAX runtime verification tool. JPAX

provides an integrated environment for monitoring the execution of Java programs. A program is

instrumented to generate an execution trace when run, which can then be examined by various

specialized algorithms that we have described. Amongst these are algorithms for testing the trace

aga/nst future time and past time temporal logic formulae. We have presented how such logics can
be formulated in a rewriting logic, and how the Mande rewriting system can be used to monitor the

vMidit_" of _he execution trace against such formulae. It has also been shown how observer automata

can be generated from future time and past time temporal logic formulae, to achieve even more
effcient observer algorithms. An interesting observation is, however, that the implementation of

these logics in the Mande rewriting system resulted in very small code, and still compared very well

with the automata solutions in efficiency. Using Maude for defining new observer logics seems to be

an excellent prototyping approach at least, and even seems fast enough for practical monitoring. We

furthermore presented algorithms for performing data race and deadlock analysis. These algorithms

in their basic form have been implemented in other systems, but the data race algorithm has here

been adapted to work for Java, and the deadlock algorithm has been extended to yield fewer false

positives. Future work includes studying more powerful logics, including real-time information and

data. Concerning concurrency analysis, we are currently expanding the kinds of errors that can

be found by simple trace analysis. We expect to combine the runtime monitoring environment

with a test case generation environment that can generate many execution traces. Such a test case

environment can include a stateless model checker. Runtime verification can be used during testing

or after deployment, during operation of the software. An important and non-trivial research topic

is how to correct the behavior of a program on-the-fly when properties are violated.
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